Name _______________________________

Chapter 4: Regents Physics Weight lab

Goal: To experimentally determine the mass of (10) small objects in the physics classroom.

Materials

- 5N and 2.5 N Spring Scale
- Scale

Procedure

Use the hints below to find the (10) objects in the physics classroom that will be used in this experiment.

- Once you find the object, find the weight of the object using a Newton spring scale.
- Place the object on a scale and determine its mass
- Finish the postlab when all objects are found

Hint #1: I'm a low friction rolling machine..give me a track and I’m off!

Hint #2: Don’t try to stop me; I can cap a tube like no one else

Hint #3: I am circular (like a ring) and made of iron

Hint #4: Why run numbers in your head? I’m the wiz!

Hint #5: Squeeze me and I’ll shoot dihydrogen monoxide at you!

Hint #6: Stack, stack, stack..you put a block on my top!

Hint #7: 100 = 1; but what am I?

Hint #8: I’m too sick to go to school..look, this proves it!

Hint #9: No hot hands with me!! I am great at protecting your phalanges.

Hint #10: I’ve finally been returned! I spent too long in the can.
Record your data and calculations in the table below

<table>
<thead>
<tr>
<th>Hint #</th>
<th>Object’s Name</th>
<th>Weight (N) from spring scale</th>
<th>Mass using scale (Kg)</th>
<th>Weight (lbs) using formula</th>
<th>Mass (Kg) using formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculations

1. Calculate the weight of each object in pounds using the conversion 1kg = 2.205 lbs. Show work for each trial below. Place you answers in the table.

Trial #1

Trial #6

Trial #2

Trial #7

Trial #3

Trial #8

Trial #4

Trial #9

Trial #5

Trial #10
1) A 10-kilogram rubber block is pulled horizontally at constant velocity across a sheet of ice. Calculate the magnitude of the force of friction acting on the block. [Show all work, including the equation and substitution with units.]

2) A skier on waxed skis is pulled at constant speed across level snow by a horizontal force of 39 newtons. Calculate the normal force exerted on the skier. [Show all work, including the equation and substitution with units.]

3) The diagram below shows a 5.0-kilogram block accelerating at 6.0 meters per second2 along a rough horizontal surface by the application of a horizontal force, F, of 50. newtons.

 ![Diagram](image)

 What is the magnitude in newtons of the force of friction, F_f, acting on the block?

4) A box of mass m is held motionless on a frictionless inclined plane by a rope that is parallel to the surface of the plane. On the diagram below, draw and label all of the force vectors acting on the box.

 ![Diagram](image)

Questions 5 and 6 refer to the following:

A force of 10. newtons toward the right is exerted on a wooden crate initially moving to the right on a horizontal wooden floor. The crate weighs 25 newtons.
5) (a) Calculate the magnitude of the force of friction between the crate and the floor in the given diagram. [Show all work, including the equation and substitution with units.]

(b) What is the magnitude of the net force acting on the crate?

(c) Is the crate accelerating? [Explain your answer.]

6) (a) On the diagram provided, draw and label all vertical forces acting on the crate.

(b) On the same diagram, draw and label all horizontal forces acting on the crate.

7) When a child squeezes the nozzle of a garden hose, water shoots out of the hose toward the east. What is the compass direction of the force being exerted on the child by the nozzle?