Name _____

16 • Acids, Bases and salts

16.9 Salts Lab

We have seen that a conjugate acid or a conjugate base can react with water to produce either hydronium ion or hydroxide ion. This behavior is called <u>hydrolysis</u>. The conjugate acids and bases that we have encountered are ions. As such, they can be added to a solution in the form of a salt. For example, acetate ion is the conjugate base of acetic acid. We can add acetate ion to a solution by adding sodium acetate.

 $\operatorname{NaC_2H_3O_2(s)} \xrightarrow{\operatorname{H_20}} \operatorname{Na^+}(aq) + \operatorname{C_2H_3O_2^-}(aq)$

Recall that soluble ionic salts are strong electrolytes. Because of acetate's tendency to hydrolyze water, a solution of sodium acetate is basic.

 $C_2H_3O_2(aq) + H_2O(l) \longrightarrow HC_2H_3O_2(aq) + OH(aq)$

The acetate ion contributes (by hydrolysis of water) to the OH⁻ concentration. The sodium ion does not react with water. It is the conjugate acid of a *strong* base, sodium hydroxide, and is therefore a *weak* conjugate acid. Remember: *weak conjugates* do *not* react with water.

 $Na^{+}(aq) + H_2O(l) \rightarrow no reaction$

The acidity or basicity of a salt depends on the salt's constituent ion. We can think of all salts as the products of acid-base neutralization reactions. For example, hydrochloric acid and sodium hydroxide react to form water and sodium chloride. HCl is a strong acid; therefore its conjugate, chloride ion, is weak. Sodium hydroxide is a strong base; therefore its conjugate, sodium ion, is weak. When both of the ions of the salt are *weak* conjugates, the solution is neutral. A solution of sodium chloride has a pH of 7.

The pH of a salt solution can be predicted qualitatively by considering the ionic constituents of the salt.

- 1. Salts derived from a strong base and a strong acid: The solution has a pH of 7.
- 2. <u>Salts derived from a strong base and a weak acid:</u> The solution has a pH above 7.

3. <u>Salts derived from a weak base and strong acid</u>: The solution has a pH below 7.

4. Salts derived from a weak base and a weak acid: The solution has a pH greater than 7.

pH of Salts Lab

Materials:

- o (10) large test tubes
- o (2) test tube racks
- Wash bottle
- o Glass stir rods
- o pH paper
- Digital pH Probe
- The salts listed in the table

Salt	Source of Conjugate Cation	Source of Conjugate Anion	Which one determine pH?	Predicted pH Range (acidic or basic)	pH (pH paper)	pH (probe)
	(weak or strong)	(weak or strong)	•	,		
NaCl						
NH ₄ Cl						
AI(NO ₃) ₃						
KBr						
Na ₂ CO ₃						
(NH ₄) ₂ CO ₃						
NaClO						
Ca(NO ₃) ₂						
NH ₄ C ₂ H ₃ O ₂						
Na ₂ C ₂ O ₄						
CuCl ₂						
NaC ₂ H ₃ O ₂						

Postlab Questions:

1. There were (2) salts in this lab that were derived from weak acids and bases. Write the salts below and look-up the K_a and K_b values for the acids and bases of these conjugates. Determine if the salt is acidic or basic by comparing the equilibrium values. Show how the stronger conjugate hydrolyzes in water to determine the pH.

a) Salt Formula		Predicted pH [Acidic / Basic / Neutral] (circle one)			
	anion:	K _b value			
	cation:	K _a value			
Hydrolysis equation					
a) Salt Formula		Predicted pH [Acidic / Basic / Neutral] (circle one)			
	anion:	K _b value			
	cation:	K _a value			
Hydrolysis equation					

Helpful Tables

TABLE 4.2 Common Strong Acids and Bases					
Strong Acids	Strong Bases				
Hydrochloric, HCl	Group 1A metal hydroxides (LiOH, NaOH, KOH, RbOH, CsOH)				
Hydrobromic, HBr	Heavy group 2A metal hydroxides [Ca(OH) ₂ , Sr(OH) ₂ , Ba(OH) ₂]				
Hydroiodic, HI					
Chloric, HClO3					
Perchloric, HClO ₄					
Nitric, HNO3					
Sulfuric, H ₂ SO ₄					

Table 17.3 • Ionization Constants for Some Acids and Their Conjugate Bases

_	Acid Name	Acid	Ka	Base	Kb	Base Name
4	Perchloric acid	HCIO4	large	CIO4-	very small	perchlorate ion
Т	Sulfuric acid	H₂SO4	large	HSO4	very small	hydrogen sulfate ion
Т	Hydrochloric acid	HCL	large	ci	very small	chloride ion
Т	Nitric acid	HNO ₃	large	N03-	very small	nitrate ion
Т	Hydronium ion	H₃0+	1.0	H ₂ 0	1.0×10^{-14}	water
Т	Sulfurous acid	H ₂ SO ₃	1.2×10^{-2}	HSO3	8.3×10^{-13}	hydrogen sulfite ion
Т	Hydrogen sulfate ion	HSO4	1.2×10^{-2}	504 ²⁻	8.3×10^{-13}	sulfate ion
Т	Phosphoric acid	H ₃ PO ₄	7.5×10^{-3}	H ₂ PO ₄	1.3×10^{-12}	dihydrogen phosphate ion
Т	Hexaaquairon(III) ion	Fe(H₂O)6 ³⁺	6.3×10^{-3}	Fe(H₂O)₅OH ²⁺	1.6×10^{-12}	pentaaquahydroxoiron(III) ion
Т	Hydrofluoric acid	HF	7.2×10^{-4}	F	1.4×10^{-11}	fluoride ion
Т	Nitrous acid	HNO ₂	4.5×10^{-4}	N02	2.2×10^{-11}	nitrite ion
Т	Formic acid	HC0 ₂ H	1.8×10^{-4}	HCO ₂	5.6×10^{-11}	formate ion
Т	Benzoic acid	C ₆ H ₅ CO ₂ H	6.3×10^{-5}	$C_6H_5CO_2^-$	1.6×10^{-10}	benzoate ion
Т	Acetic acid	CH ₃ CO ₂ H	1.8×10^{-5}	CH ₃ CO ₂	5.6×10^{-10}	acetate ion
Ţ	Propanoic acid	CH3CH2CO2H	1.3×10^{-5}	CH ₃ CH ₂ CO ₂	7.7×10^{-10}	propanoate ion
튭	Hexaaquaaluminum ion	AI(H ₂ O)6 ³⁺	$7.9 imes10^{-6}$	AI(H ₂ O) ₅ OH ²⁺	1.3×10^{-9}	pentaaquahydroxoaluminum ion 🗄
tre	Carbonic acid	H ₂ CO ₃	$4.2 imes 10^{-7}$	HCO3	2.4×10^{-8}	hydrogen carbonate ion
12	Hexaaquacopper(II) ion	Cu(H ₂ O)6 ²⁺	1.6×10^{-7}	$Cu(H_2O)_5OH^+$	6.25×10^{-8}	pentaaquahydroxocopper(II) ion g
¥	Hydrogen sulfide	H ₂ S	1×10^{-7}	HS	1×10^{-7}	hydrogen sulfide ion 🛛 🖁
sing	Dihydrogen phosphate ion	H ₂ PO ₄	6.2×10^{-8}	HPO42-	1.6×10^{-7}	hydrogen phosphate ion .É
rea	Hydrogen sulfite ion	HSO ₃ ^{−−}	$6.2 imes 10^{-8}$	503 ²	1.6×10^{-7}	sulfite ion
Ĕ	Hypochlorous acid	HCIO	3.5×10^{-8}	CIO-	2.9×10^{-7}	hypochlorite ion 🖁
Т	Hexaaqualead(II) ion	Pb(H ₂ O)6 ²⁺	1.5×10^{-8}	Pb(H ₂ O) ₅ OH ⁺	6.7×10^{-7}	pentaaquahydroxolead(II) ion
Т	Hexaaquacobalt(II) ion	Co(H ₂ O) ₆ ²⁺	1.3×10^{-9}	$Co(H_2O)_5OH^+$	7.7×10^{-6}	pentaaquahydroxocobalt(II) ion
Т	Boric acid	B(OH) ₃ (H ₂ O)	7.3×10^{-10}	B(OH)4	1.4×10^{-5}	tetrahydroxoborate ion
Т	Ammonium ion	NH4 ⁺	5.6×10^{-10}	NH ₃	1.8×10^{-5}	ammonia
Т	Hydrocyanic acid	HCN	$4.0 imes 10^{-10}$	CN ⁻	2.5×10^{-5}	cyanide ion
Т	Hexaaquairon(II) ion	Fe(H ₂ O) ₆ ²⁺	3.2×10^{-10}	Fe(H ₂ O) ₅ OH ⁺	3.1×10^{-5}	pentaaquahydroxoiron(II) ion
Т	Hydrogen carbonate ion	HC03	$4.8 imes 10^{-11}$	C032-	2.1×10^{-4}	carbonate ion
Т	Hexaaquanickel(II) ion	Ni(H ₂ 0) ₆ ²⁺	2.5×10^{-11}	$Ni(H_20)_5OH^+$	4.0×10^{-4}	pentaaquahydroxonickel(II) ion
V	Hydrogen phosphate ion	HPO42-	3.6×10^{-13}	PO43-	2.8×10^{-2}	phosphate ion
	Water	H ₂ O	1.0×10^{-14}	он-	1.0	hydroxide ion
	Hydrogen sulfide ion*	HS	1×10^{-19}	S ²⁻	1×10^{5}	sulfide ion
	Ethanol	C ₂ H ₅ OH	very small	C ₂ H ₅ O	large	ethoxide ion
	Ammonia	NH ₃	very small	NH ₂	large	amide ion
	Hydrogen	H ₂	very small	H-	large	hydride ion

*The values of ${\it K}_{a}$ for HS $^{-}$ and ${\it K}_{b}$ for S $^{2-}$ are estimates.