Chapter 11 Waves Lecture Notes

Chapter 11

Section 3 Properties of Waves

Objectives

**Fill-in the yellow printed words in your note packet

- Distinguish local particle vibrations from overall wave motion.
- Differentiate between pulse waves and periodic waves.
- Interpret waveforms of transverse and longitudinal waves.
- Apply the relationship among wave speed, frequency, and wavelength to solve problems.
- Relate energy and amplitude.

Chapter 11

Section 3 Properties of Waves

Wave Motion

•	A is a physical environment through which a
	disturbance can travel. For example, water is the
	medium for ripple waves in a pond.

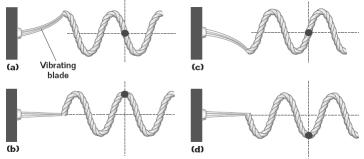
A is the motion of a disturbance.

- Waves that require a medium through which to travel are called ______. Water waves and sound waves are mechanical waves.
- _____ such as visible light do not require a medium.

Resources

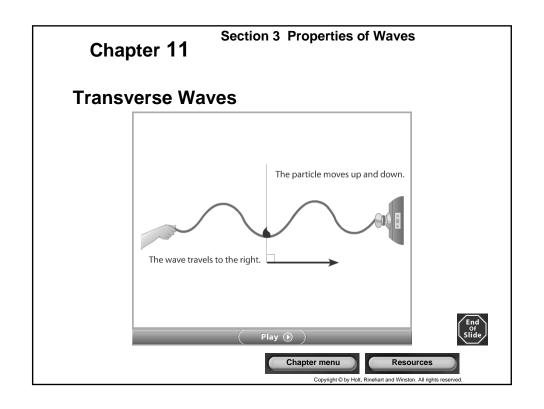
Section 3 Properties of Waves

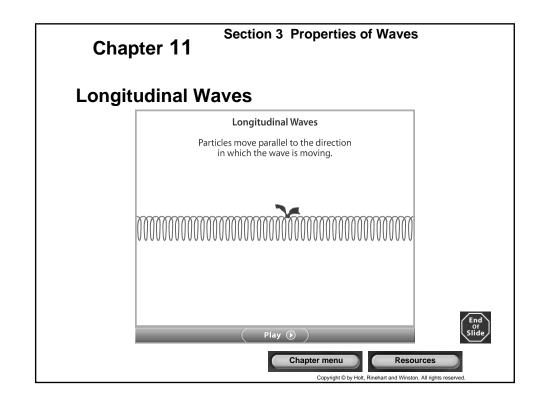
Chapter 11


Wave Types

- A wave that consists of a single traveling pulse is called a ______.
- Whenever the source of a wave's motion is a periodic motion, such as the motion of your hand moving up and down repeatedly, a ______ is produced.
- A wave whose source vibrates with simple harmonic motion is called a ______. Thus, a sine wave is a special case of a periodic wave in which the periodic motion is simple harmonic.

Chapter 11 Section 3 Properties of Waves

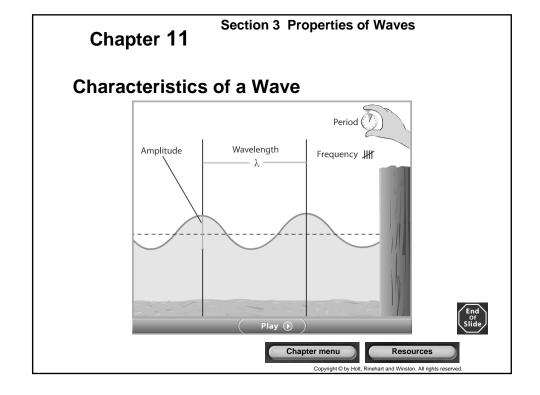

Relationship Between SHM and Wave Motion


As the sine wave created by this vibrating blade travels to the right, a single point on the string vibrates up and down with simple harmonic motion.

Chapter menu Resources

Chapter 11 Wave Types, continued A _______ is a wave whose particles vibrate ______ to the direction of the wave motion. The _____ is the _____ point above the equilibrium position, and the _____ is the _____ point below the equilibrium position. The _____ is the distance between two adjacent similar points of a wave.

Chapter 11 Wave Types, continued A ______ is a wave whose particles vibrate parallel to the direction the wave is traveling. A longitudinal wave on a spring at some instant t can be represented by a graph. The _____ correspond to compressed regions, and the _____ correspond to stretched regions. The _____ are regions of _____ (relative to the equilibrium density or pressure of the medium), and the _____ are regions of _____.


Section 3 Properties of Waves

Chapter 11

Period, Frequency, and Wave Speed

- The ______ describes the number of waves that pass a given point in a unit of time.
- The _____ describes the time it takes for a complete wavelength to pass a given point.

Section 3 Properties of Waves

Chapter 11

Period, Frequency, and Wave Speed, continued

- The _____ is constant for any given medium.
- The _____ is given by the following equation:
- This equation applies to both mechanical and electromagnetic waves.

Chapter 11

Section 3 Properties of Waves

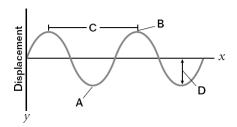
Waves and Energy Transfer

- Waves _____ by the vibration of matter.
- Waves are often able to transport energy efficiently.
- The rate at which a wave transfers energy depends on the ______.

-₋₋₋₋₋

=_____

 The amplitude of a wave gradually diminishes over time as its energy is dissipated.



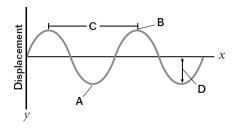
Chapter 11

Standardized Test Prep

Multiple Choice, continued

Base your answers to questions 11–13 on the graph.

- 11. What kind of wave does this graph represent?
 - A. transverse wave
- C. electromagnetic wave
- B. longitudinal wave
- D. pulse wave


Resources

Chapter 11

Standardized Test Prep

Multiple Choice, continued

Base your answers to questions 11–13 on the graph.

- **12.** Which letter on the graph represents wavelength?
 - F. A

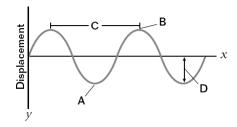
H.C

G.B

J. D

Chapter menu

Resources


Copyright © by Holt, Rinehart and Winston. All rights reserved

Chapter 11

Standardized Test Prep

Multiple Choice, continued

Base your answers to questions 11–13 on the graph.

- 13. Which letter on the graph is used for a trough?
 - **A.** A
 - **B.** B

- **C.** C
- **D.** D

Chapter menu

Resources

Oht © by Holt Rinehart and Winston All rights reserved

Chapter 11

Standardized Test Prep

Multiple Choice, continued

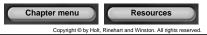
- **16.** Two successive crests of a transverse wave 1.20 m apart. Eight crests pass a given point 12.0 s. What is the wave speed?
 - **F.** 0.667 m/s
 - **G.** 0.800 m/s
 - **H.** 1.80 m/s
 - **J.** 9.60 m/s

Chapter menu

Resources

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Section 4 Wave Interactions


Chapter 11

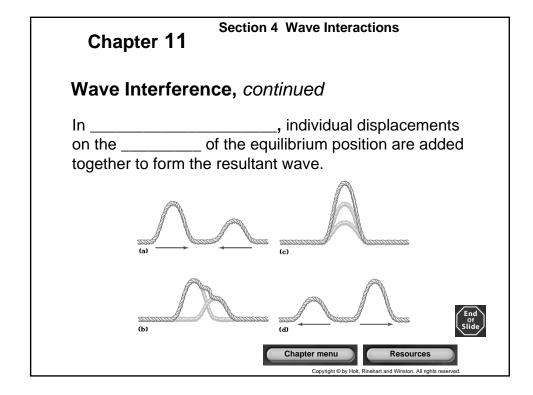
Objectives

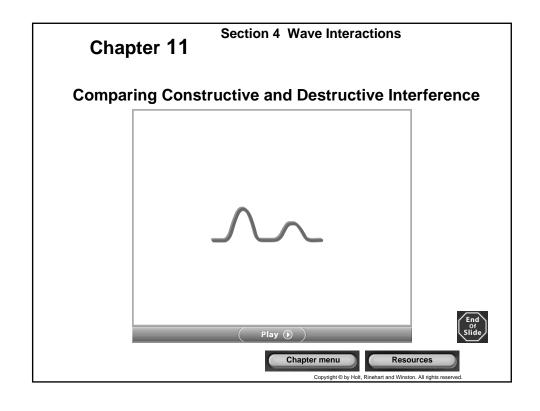
**Fill-in the yellow printed words in your note packet

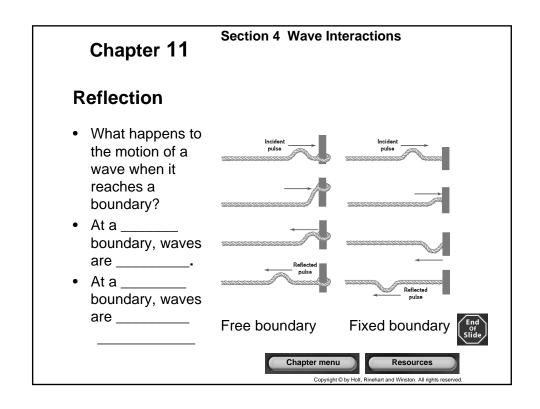
- Apply the superposition principle.
- Differentiate between constructive and destructive interference.
- Predict when a reflected wave will be inverted.
- **Predict** whether specific traveling waves will produce a standing wave.
- **Identify** nodes and antinodes of a standing wave.

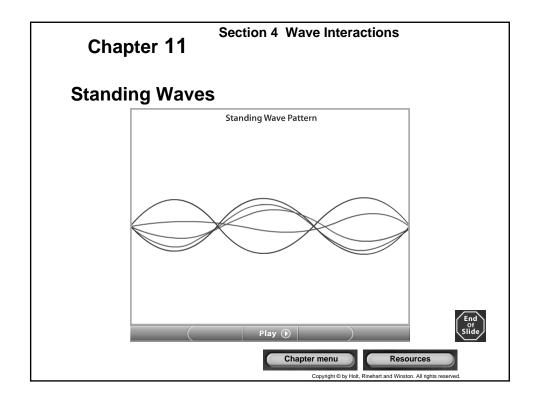
Chapter 11 Section 4 Wave Interactions

Wave Interference

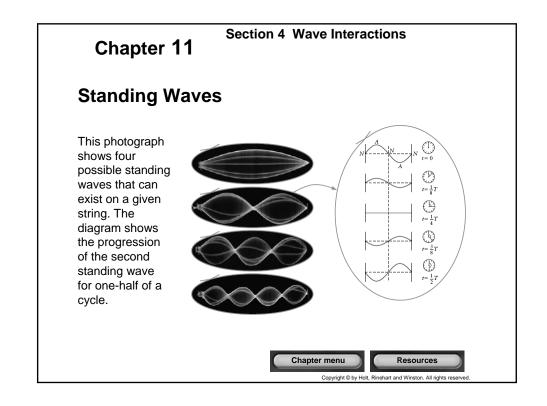

- Two different material objects can never occupy the same space at the same time.
- Because mechanical waves are not matter but rather are displacements of matter,
- The combination of two overlapping waves is called






Resources

Chapter 11 Wave Interference, continued In ________, individual displacements on _______ of the equilibrium position are added together to form the resultant wave.



Section 4 Wave Interactions Standing Waves A ______ is a wave pattern that results when two waves of the same frequency, wavelength, and amplitude travel in opposite directions and interfere. Standing waves have nodes and antinodes. A _____ is a point in a standing wave that maintains _____. An ____ is a point in a standing wave, halfway between two nodes, at which the _____ occurs.

Section 4 Wave Interactions Chapter 11 Standing Waves, continued Only ______ produce standing wave patterns. • The _____ of the string must be _____ because these points cannot vibrate. · A standing wave can be produced for any wavelength that allows both ends to be nodes. • In the diagram, possible wavelengths include __ (b), __ (c), and _____ (d). Chapter menu Resources

Chapter 11 Standardized Test Prep

Multiple Choice, continued

Base your answers to questions 14–15 on the passage.

A wave with an amplitude of 0.75 m has the same wavelength as a second wave with an amplitude of 0.53 m. The two waves interfere.

14. What is the amplitude of the resultant wave if the interference is constructive?

F. 0.22 m

G. 0.53 m

H. 0.75 m

J. 1.28 m

Chapter 11 Standardized Test Prep

Multiple Choice, continued

Base your answers to questions 14-15 on the passage.

A wave with an amplitude of 0.75 m has the same wavelength as a second wave with an amplitude of 0.53 m. The two waves interfere.

- **15.** What is the amplitude of the resultant wave if the interference is destructive?
 - **A.** 0.22 m
 - **B.** 0.53 m
 - **C.** 0.75 m
 - **D.** 1.28 m

Chapter 11 Standardized Test Prep

Short Response, continued

18. What kind of wave does not need a medium through which to travel?

Chapter 11 Standardized Test Prep

Short Response, continued

19. List three wavelengths that could form standing waves on a 2.0 m string that is fixed at both ends.

Chapter 11 Standardized Test Prep

Extended Response

20. A visitor to a lighthouse wishes to find out the height of the tower. The visitor ties a spool of thread to a small rock to make a simple pendulum. Then, the visitor hangs the pendulum down a spiral staircase in the center of the tower. The period of oscillation is 9.49 s. What is the height of the tower? Show all of your work.

Chapter 11 Standardized Test Prep

Extended Response, continued

21. A harmonic wave is traveling along a rope. The oscillator that generates the wave completes 40.0 vibrations in 30.0 s. A given crest of the wave travels 425 cm along the rope in a period of 10.0 s. What is the wavelength? Show all of your work.

