Titration 1: HCI Titrated with NaOH

Titration 1: Acid is HCI, phenolphthalein as the indicator

1. Obtain about 60 mL of the standardized (≈ 0.1 M) NaOH solution. **CAUTION:** Sodium hydroxide solution is caustic.

Avoid spilling it on your skin or clothing. Rinse with water if it comes in contact with skin or clothing.

2. Obtain a 50-mL buret and rinse the buret with a few mL of the NaOH solution. Fill the buret to above the 0.00-mL mark then drain to the 0.00-mL mark.

3. Obtain about 30 mL of the \approx 0.1 M acid solution. **CAUTION:** Avoid spilling the acid on your skin or clothing. Rinse with water if it comes in contact with skin or clothing.

4. Pipet 25.00 mL of the acid solution into a clean, dry 250-mL beaker.

- Add two to three drops of the assigned indicator.
- Use a utility clamp to suspend the pH electrode on a ring stand as shown n Figure 1. Situate the pH electrode in the acid solution and adjust its position toward the outside of the beaker so that the stirring bar does not strike it.
- o Turn on the magnetic stirrer

5. Set up the PASCO software and hardware as directed in pre-lab. Make sure you can see the graph and table during the titration

6. Press the START button to begin recording and titrate until the end point is reached

Record the volume, pH and indicator color in your notebook.

• Continue adding NaOH solution until the buret reaches the 50.00 ml mark. **Do not go below this** mark!

8. <u>Press STOP</u> to stop when you have finished collecting data. Examine the data points along the displayed graph of pH vs. time.

9. Print the graph as you will need it to complete this lab.

10. Continue with DATA ANALYSIS and POSTLAB

Clean-up

1. Collect all rinse, left over and titrated solutions in a 600-mL beaker and discard in the appropriately labeled waste container.

2. Rinse the pH electrode, place it back in its storage solution.

DATA ANALYSIS Titration #1 HCI with NaOH

1. Using the titration curve, find the equivalence point for the titration. This occurs at a pH of 7.00 since this is a strong acid–strong base titration. (Mathematically, this should occur at the inflection point of the curve.) **Clearly mark and label the equivalence point on the graph.**

Record the volume of NaOH used to reach the equivalence point. _____ml NaOH

2. Using the equivalence volume of NaOH and precise molarity of NaOH, calculate the molarity of the HCl solution you titrated. Use $M_{acid}V_{acid} = M_{base}V_{base}$

Molarity of HCI _____ M

3. The equivalence point for this titration occurs at a pH of 7. *Why will* an acid-base indicator that changes color between pHs 5 and 9 work just as well to accurately determine the equivalence point for this titration as one that changes color at a pH of 7?

4. Which of the indicators tested could be used to accurately determine the equivalence point for this titration? List a few.

Staple the graph to this paper