Thermodynamics **AP Problems**

Practice Exercises

Multiple-Choice

For the first four problems below, one or more of the following responses will apply; each response may be used more than once or not at all in these questions.

- I. ΔG°
- II. ΔS°
- III. ΔH°
- IV. ΔG
- V. H
- 1. Which of these must be negative for a reaction to be spontaneous?
 - (A) I
 - (B) III
 - (C) I, II, and IV (CE)
 - (D) IV
 - (E) I, III, and V

- 2. Which of these cannot be determined?
 - (A) I and III
 - (B) II
 - (C) I, II, and IV
 - (D) I, III, and IV
 - (E) V
- 3. Which of these are extensive values?
 - (A) I and III
 - (B) II
 - (C) I, II, and IV
 - (D) IV, and V
 - (E) I, III, and V

- 4. If ____ is negative and 8. Which of the following explains is positive, a reaction will never be spontaneous.
 - (A) II, III
 - (B) III, IV
 - (C) I, II
 - (D) IV, III
 - (E) I, V
- 5. When 0.400 g of CH₄ is burned in excess oxygen in a bomb calorimeter that has a heat capacity of 3245 J $^{\circ}$ C⁻¹, a temperature increase of 6.795°C is observed. What is the value of q_{ν} ?
 - (A) 220 kJ mol^{-1}
 - (B) -882 kJ
 - (C) 477 kJ
 - (D) -22.05 kJ
 - (E) 8.820 kJ g^{-1}
- 6. Using the data in question 1, determine ΔH° for the combustion of methane.
 - (A) $-22.05 \text{ kJ mol}^{-1}$
 - (B) -882 kJ
 - (C) +22.05 kJ
 - (D) -8.820 kJ g^{-1}
 - (E) This value cannot be determined because w is not known.
- 7. Which of the following describes a system that CANNOT be spontaneous?
 - (A) ΔH° is positive, and ΔS° is negative.
 - (B) ΔH° is positive, and ΔS° is positive.
 - (C) ΔH° is negative, and ΔS° is negative.
 - (D) ΔH° is negative, and ΔS° is positive.
 - (E) ΔH° is 0.00, and ΔS° is positive.

- the fact that, when KCl is dissolved, water condenses on the outside of the beaker?
 - (A) ΔH° is positive, and ΔS° is negative.
 - (B) ΔH° is positive, and ΔS° is positive.
 - (C) ΔH° is negative, and ΔS° is negative.
 - (D) ΔH° is negative, and ΔS° is positive.
 - (E) ΔH° is 0.00, and ΔS° is negative.
- 9. The reaction with the greatest expected entropy decrease is
 - (A) $CH_4(g)$ $2O_2(g)$ $CO_2(g)$ $2H_2O(g)$
 - (B) $CH_4(\ell)$ $2O_{2}(g)$ $CO_2(g)$ $2H_2O(g)$
 - (C) $CH_4(g)$ $2O_2(g)$ $CO_2(g)$ $2H_2O(\ell)$
 - (D) $CH_4(g)$ $2O_{2}(g)$ $CO_2(s)$ $2H_2O(g)$
 - (E) $CH_4(\ell)$ $2O_{2}(g)$ $CO_2(g)$ dd+q $2H_2O(\ell)$
- 10. Water boils at 100°C with a molar heat of vaporization of +43.9 kJ. What is the entropy change when

$$H_2O(g) \rightarrow H_2O(\ell)$$

at 100°C?

- (A) Problem cannot be solved; ΔG° must also be known.
- (B) Problem cannot be solved; this is not a chemical reaction.
- (C) -439 J K^{-1}
- (D) +0.439 J K⁻¹
- (E) -118 J K^{-1}

- 11. The Dulong and Petit law says that 14. Which of the following is the the molar specific heat of solid elements is approximately 25 J mol⁻¹ K⁻¹. This suggests that
 - (A) the heat absorbed depends only on the number of atoms
 - (B) the heat absorbed depends on the volume change with temperature
 - (C) the heat absorbed can be calculated from the first law of thermodynamics
 - (D) potential energy and heat energy are inversely related
 - (E) This law is an oddity since it does not apply to elements that are liquids or gases.
- 12. A gas is allowed to expand from an initial volume of 5.00 L and pressure of 3.00 atm to a volume of 15.0 L and pressure of 1.00 atm. What is the value of w?
 - (A) $+30.0 \, \text{L}$ atm
 - (B) $+10.0 \, \text{L}$ atm
 - (C) -45.0 L atm
 - (D) +15.0 L atm
 - (E) -10.0 L atm
- 13. In question 8 the units of work are given as L atm. To convert L atm to the metric unit of joules, we need to know
 - (A) Avogadro's constant and Planck's constant
 - (B) the universal gas law constant in units of L atm mol⁻¹ K⁻¹
 - (C) the universal gas law constant in units of J mol⁻¹ K⁻¹
 - (D) both B and C
 - (E) A, B, and C

- LEAST probable for a combustion reaction?
 - (A) ΔG° is a large negative number.
 - (B) ΔS° is a large negative number.
 - (C) ΔH° is a large negative number.
 - (D) K_{eq} is a large positive number.
 - (E) Q, the reaction quotient, is a small number.
- 15. Of the following, which can be precisely determined for a chemical substance?
 - (A) entropy, S
 - (B) enthalpy, H
 - (C) free energy, G
 - (D) internal energy, E
 - (E) all of these
- 16. The heat of formation of $CH_3OH(\ell) = -238.6 \text{ kJ mol}^{-1}$ of $CO_2(g) = -393.5 \text{ kJ mol}^{-1}$, and of $H_2O(g) = -241.8 \text{ kJ}$ mol^{-1} . What is ΔH° for the heat of combustion of methanol?
 - (A) -396.7 kJ
 - (B) -1277 kJ
 - (C) -638.5 kJ
 - (D) + 396.7 kJ
 - (E) This value cannot be calculated without the heat of formation for $O_2(g)$.
- 17. The rate of reaction will be large if
 - (A) ΔG° is a large negative number
 - (B) ΔS° is a large negative number
 - (C) ΔH° is a large negative number
 - (D) K_{eq} is a large positive number
 - (E) None of the above can be used to estimate reaction rates.

18. Given the following thermochemical data:

$$N_2O_4(g) \rightarrow 2NO_2(g)$$
 $\Delta H^{\circ} = +57.93 \text{ kJ}$
 $2NO(g) + O_2(g) \rightarrow 2NO_2(g) \Delta H^{\circ} = -113.14 \text{ kJ}$

determine the heat of the reaction

$$2NO(g) + O_2(g) \rightarrow N_2O_4(g)$$

- (A) 171.07 kJ
- (B) -55.21 kJ
- (C) -171.07 kJ
- (D) + 55.21 kJ
- (E) 85.54 kJ
- 19. Which of the following can change the value of ΔG° for a chemical reaction?
 - (A) changes in the total pressure
 - (B) changes in the pressures of the reactants
 - (C) changes in the concentrations of the reactants
 - (D) changes in the temperature in
 - (E) the presence of a catalyst
- 20. At what temperature is $K_{eq} = 1.00$ if $\Delta S^{\circ} = 22.6 \text{ J K}^{-1}$ and $\Delta H^{\circ} =$ 15.3 kJ for a chemical reaction?
 - (A) 404°C
 - (B) 677°C
 - (C) 0.67°C
 - (D) 1477°C
 - (E) 1204°C
- 22. The reaction

$$2SO_3(g) \rightarrow 2S(s) + 3O_2(g)$$

at 25°C.

- (A) + 396 kJ
- (B) -446 kJ
- (C) + 346 kJ
- (D) -346 kJ
- (E) +742 kJ

$$2C_6H_6(\ell) + 15O_2(g) \rightarrow 12CO_2(g) + 6H_2O(\ell)$$

is expected to have

- (A) a positive ΔH and a negative ΔS
- (B) a negative ΔH and a negative ΔS
- (C) a positive ΔH and a positive ΔS
- (D) a negative ΔH and a negative ΔS
- (E) These predictions cannot be made.

- 23. The evaporation of any liquid is expected to have
 - (A) a positive ΔH and a negative
 - (B) a negative ΔH and a negative
 - (C) a positive ΔH and a positive
 - (D) a positive ΔH and a negative
 - (E) These predictions cannot be

- 24. Which of the following is most likely to be true?
 - (A) No products are formed in a nonspontaneous reaction.
 - (B) A positive ΔG° indicates a spontaneous reaction.
 - (C) A positive ΔS° always means that the reaction is spontaneous.
 - (D) A spontaneous reaction always goes to completion.
 - (E) Combustion of organic compounds has a negative ΔH° .

See Appendix 1 for explanations of answers.

Free-Response

Answer the following questions using the concepts of thermodynamics and equilibrium and the methods for solving problems.

- What parameters define whether or not a given reaction is spontaneous? Based on those parameters, what does it mean to say a reaction is spontaneous?
- (b) What is the difference between E, ΔE , and ΔE° ?
- (c) Tables of thermodynamic data list heat of formation, ΔH_f° , standard free energy, ΔG_{298}° , and entropy, S°. Why don't entropy values have a delta symbol, Δ ? What other difference does a table of entropy values have?

- (d) The value of K_c for the reaction 2NO + O₂ \leftrightarrows N₂O₄ is 36 at a certain temperature. Calculate K for the following reactions.
 - (i) $6NO + 3O_2 \leftrightarrows 3N_2O_4$ (ii) $NO + \frac{1}{2}O_2 \leftrightarrows \frac{1}{2}N_2O_4$ (iii) $2N_2O_4 \leftrightarrows 4NO + 2O_2$