Mole Problem

Using your knowledge of mole calculations and unit conversions, determine how many atoms there are in 1 gallon of gasoline. Assume that the molecular formula for gasoline is $\mathrm{C}_{6} \mathrm{H}_{14}$ and that the density of gasoline is approximately 0.85 grams $/ \mathrm{mL}$.

There are \qquad atoms in 1 gallon of gasoline.

Mole Problem - Solution

Using your knowledge of mole calculations and unit conversions, determine how many atoms there are in 1 gallon of gasoline. Assume that the molecular formula for gasoline is $\mathrm{C}_{6} \mathrm{H}_{14}$ and that the density of gasoline is approximately 0.8500 grams $/ \mathrm{mL}$.

Using a conversion factor of 3785 mL per gallon, we can determine that the mass of gasoline in one gallon is $3785 \mathrm{~mL} \times 0.8500 \mathrm{~g} / \mathrm{mL}=3217$ grams.

Because the molar mass of $\mathrm{C}_{6} \mathrm{H}_{14}$ is $86 \mathrm{~g} / \mathrm{mole}$, there are 3217 / 86 moles of gasoline molecules, or 37.4 moles of molecules present.

Multiplying 37.4×20 (the number of atoms per mole of gasoline), there are 748 moles of atoms.

Finally, multiplying 748 moles of atoms by 6.02×10^{23} atoms/mole, we can find that there are 4.50×10^{25} atoms present in the sample.

There are 4.50×10^{25} atoms in 1 gallon of gasoline.

