## **Regents Physics**

## Chapter 7 Circular Motion Lecture Notes



| Chapter 7 Section 1 Circular Motion                                                                                                                                                |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Tangential Speed                                                                                                                                                                   |  |  |
| <ul> <li>The tangential speed (v<sub>i</sub>) of an object in circular<br/>motion is the object's speed along an imaginary line<br/>drawn tangent to the circular path.</li> </ul> |  |  |
| <ul> <li>Tangential speed depends on the distance from the<br/>object to the center of the circular path.</li> </ul>                                                               |  |  |
| When the tangential speed is constant, the motion is described as uniform circular motion.                                                                                         |  |  |
| Chapter menu Resources                                                                                                                                                             |  |  |

Chapter 7 Section 1 Circular Motion Objectives • Solve problems involving centripetal acceleration. • Solve problems involving centripetal force. • Explain how the apparent existence of an outward force in circular motion can be explained as inertia resisting the centripetal force.























| Chapter 7                                                                                                                                 | Standardized Test Prep                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Multiple Choice, continued                                                                                                                |                                                                               |  |
| Use the passage below to answer questions 2–3.<br>A car traveling at 15 m/s on a flat surface turns in a<br>circle with a radius of 25 m. |                                                                               |  |
| <b>3.</b> What is the most direct cause of the car's centripetal acceleration?                                                            |                                                                               |  |
|                                                                                                                                           | -                                                                             |  |
|                                                                                                                                           | Chapter menu Resources<br>Capter 5 by KR, Rotata ad Watton, Al refin started. |  |

| Chapter 7 Standardized Test Prep                                                     | Chapter 7 Section 2 Newton's Law of<br>Universal Gravitation                                                                                                      |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiple Choice, continued                                                           | Gravitational Force                                                                                                                                               |
| Use the passage below to answer questions 2–3.                                       | Orbiting objects are in free fall.                                                                                                                                |
| A car traveling at 15 m/s on a flat surface turns in a circle with a radius of 25 m. | <ul> <li>To see how this idea is true, we can use a thought<br/>experiment that Newton developed. Consider a<br/>cannon sitting on a high mountaintop.</li> </ul> |
| 2. What is the centripetal acceleration of the car?                                  | Each successive cannonball                                                                                                                                        |
| <b>F.</b> 2.4 × 10 <sup>-2</sup> m/s <sup>2</sup>                                    | the horizontal distance that                                                                                                                                      |
| <b>G.</b> 0.60 m/s <sup>2</sup>                                                      | the ball travels increases. If<br>the initial speed is great                                                                                                      |
| <b>H.</b> 9.0 m/s <sup>2</sup>                                                       | enough, the curvature of<br>Earth will cause the                                                                                                                  |
| J. zero                                                                              | cannonball to continue falling<br>without ever landing.                                                                                                           |
| Chapter menu Covint 6br Ha Resources                                                 | Chapter menu Resources                                                                                                                                            |

















