Chapter 2 Summary Pre-Test

1) A skier starting from rest skis straight down a slope 50. meters long in 5.0 seconds. What is the magnitude of the acceleration of the skier?
 A) 4.0 m/s² B) 20. m/s² C) 9.8 m/s² D) 5.0 m/s²

2) A rocket initially at rest on the ground lifts off vertically with a constant acceleration of \(2.0 \times 10^1\) meters per second². How long will it take the rocket to reach an altitude of \(9.0 \times 10^3\) meters?
 A) \(4.5 \times 10^2\) s B) \(9.0 \times 10^2\) s C) \(3.0 \times 10^1\) s D) \(4.3 \times 10^1\) s

3) Which graph best represents the motion of an object whose speed is increasing?
 A) ![Graph A] B) ![Graph B] C) ![Graph C] D) ![Graph D]

4) A rock falls from rest off a high cliff. How far has the rock fallen when its speed is 39.2 meters per second? [Neglect friction.]
 A) 19.6 m B) 123 m C) 78.3 m D) 44.1 m

5) Approximately how far will an object near Earth's surface fall in 3.0 seconds?
 A) 9.8 m B) 29 m C) 44 m D) 88 m

6) The displacement-time graph below represents the motion of a cart initially moving forward along a straight line.

![Displacement vs. Time Graph]

During which interval is the cart moving forward at constant speed?
 A) \(CD\) B) \(DE\) C) \(BC\) D) \(AB\)

7) An airplane originally at rest on a runway accelerates uniformly at 6.0 meters per second² for 12 seconds. During this 12-second interval, the airplane travels a distance of approximately
 A) 220 m B) 860 m C) 72 m D) 430 m
8) A basketball player jumped straight up to grab a rebound. If she was in the air for 0.80 second, how high did she jump?
 A) 1.2 m B) 3.1 m C) 0.78 m D) 0.50 m

9) The graph below represents the motion of an object.

According to the graph, as time increases, the velocity of the object
 A) increases B) remains the same C) decreases
Chapter 2 Pre-Test Part II

Directions: Answer the following questions using the rubric below as a guide.

<table>
<thead>
<tr>
<th>Writing a correct equation for the problem</th>
<th>1 point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug numbers into equation</td>
<td>1 point</td>
</tr>
<tr>
<td>Units on ALL numbers in work</td>
<td>1 point</td>
</tr>
<tr>
<td>Solving for Correct Final Answer with unit</td>
<td>2 point</td>
</tr>
<tr>
<td>Total point per problem</td>
<td>5 points total</td>
</tr>
</tbody>
</table>

1. A pilot stops a plane in 484 m using a constant acceleration of - 8.0 m/s². How fast was the plane moving before braking began? (assume x-direction motion only)

2. Mr. O’Leary throws his Wife’s cat, Dory, off the roof of City Hall.
 a. If people hear Dory Meow-screaming for 4 seconds, how fast will she be travelling after this time? (assume y-direction motion only)
 b. How far did Dory fall during this time?

3. Roscoe Parrish has a vertical leap of 1.2 m.
 a. What must Roscoe’s takeoff velocity be to reach this height?
 b. What is Roscoe’s hang time? (total time in the air?)