Practice Exercises

Multiple-Choice

For the first three problems below, one or more of the following responses will apply; each response may be used more than once or not at all in these questions.

- I. K_a
- II. K_{sp}
- III. Q
- IV. K.
- V. Le Châtelier's principle
- The effect of temperature on a chemical system is best described using
 - (A) I and III
 - (B) II
 - (C) III and V
 - (D) IV
 - (E) V
- This is the correct term to use to determine if a system has come to equilibrium.
 - (A) I and III
 - (B) II
 - (C) III
 - (D) IV
 - (E) V
- The term(s) most useful in determining the solubility of a substance is (are)
 - (A) I and III
 - (B) II
 - (C) III and V
 - (D) IV
 - (E) V

- 4. A chemical system in equilibrium will.
 - (A) have the same concentrations of all products and reactants
 - (B) form more products if the temperature is increased
 - (C) have a specific ratio of product to reactant concentrations
 - (D) not have any precipitates
 - (E) represent a spontaneous chemical process
- 5. Chemical equilibrium may be used to describe
 - (A) chemical reactions
 - (B) acids and bases
 - (C) solubility
 - (D) A and C
 - (E) A, B, and C
- 6. For the following reaction:

heat
$$+2NO_2(g) \rightleftharpoons N_2O_4(g)$$

which change will not be effective in increasing the amount of $N_2O_4(g)$?

- (A) decreasing the volume of the reaction vessel
- (B) increasing the temperature
- (C) adding N₂ to increase the pressure
- (D) adsorbing the N₂O₄(g) with a solid adsorbant
- (E) adding more NO₂(g) to the reaction vessel

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

has an equilibrium constant of 4.5×10^3 at a certain temperature. What is the equilibrium constant of

$$2N_2O_4(g) \rightleftharpoons 4NO_2(g)$$
?

- (A) 4.5×10^3
- (B) 9.0×10^6
- (C) 2.2×10^{-4}
- (D) 2.0×10^7
- (E) 4.9×10^{-8}

- 8. The correct form of the solubility product for silver chromate, Ag₂CrO₄, is
 - (A) $[Ag^{+}]^{2}[CrO_{4}^{2-}]$
 - (B) $[Ag^{+}][CrO_{4}^{2-}]$
 - (C) $[Ag^{+}][CrO_{4}^{2-}]^{2}$
 - (D) $[Ag^+]^2[CrO^{2-}]^4$
 - (E) $[Ag]^2[CrO_4]$

- 9. For which of the following will $K_p = K_c$?
 - (A) $MgCO_3(s) + 2HCl(g) \Rightarrow MgCl_2(s) + CO_2(g) + H_2O(\ell)$
 - (B) $C(s) + O_2(g) = CO_2(g)$
 - (C) $CH_4(g) + 3O_2(g) = CO_2(g) + 2H_2O(g)$
 - (D) $Zn(s) + 2HCl(aq) \Rightarrow H_2(g) + ZnCl_2(aq)$
 - (E) $2NO_2(g) + O_2(g) = N_2O_5(g)$
- 10. Which is an appropriate formulation of the equilibrium law for the reaction

$$MgCO_3(s) + 2HCl(g) \rightleftharpoons MgCl_2(s) + CO_2(g) + H_2O(\ell)$$
?

- (A) $\frac{[CO_2]}{[HCl]}$
- $(B) \ \frac{[MgCl_2][CO_2][H_2O]}{[HCl]^2[MgCO_3]}$
- (C) $\frac{[HCl]^2[MgCO_3]}{[MgCl_2][CO_2][H_2O]}$
- $(D) \, \frac{[CO_2]}{[HCl]^2}$
- (E) $\frac{[CO_2][H_2O]}{[HCl]^2}$

11. In the reaction

$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

the equilibrium constant is 0.020. If 0.200 mol of HI is placed in a 10.0-L flask, how many moles of I2(g) will be in the flask when equilibrium is reached?

- (A) 0.022
- (B) 0.025
- (C) 0.0022
- (D) 2.2
- (E) 0.0025

12. For the reaction

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

 $K_p = 8.8$ when pressures are measured in atmospheres. Under which of the following conditions will the reaction proceed in the forward direction?

$NO_2(g)$ $N_2O_4(g)$

- (A) 0.200 atm
- 0.352 atm
- (B) 250 mm Hg
- 400 mm Hg
- (C) 0.00255 atm
- 0.000134 atm
- (D) 46.5 mm Hg
- 82.3 mm Hg
- (E) 0.138 atm
- 0.764 atm
- 15. If units were used with the equilibrium constant, K_c , for the following reaction:

$$CH_4(g) + 3O_2(g) \rightleftharpoons CO_2(g) + 2H_2O(g)$$

they would be

- (A) M^{-2}
- (B) M^2
- (C) M
- (D) M^{-1}
- (E) M^3

- 13. The solubility product of PbI₂ is 7.9×10^{-9} . What is the molar solubility of PbI₂ in distilled water?
 - (A) 2.0×10^{-3}
 - (B) 1.25×10^{-3}
 - (C) 5.0×10^{-4}
 - (D) 8.9×10^{-5}
 - (E) 7.9×10^{-3}
- 14. The solubility of gold(III) chloride is 1.00×10^{-4} g L⁻¹. What is the solubility product of AuCl₃ (molar mass = 303)?
 - (A) 1.00×10^{-16}
 - (B) 2.7×10^{-15}
 - (C) 1.2×10^{-26}
 - (D) 3.2×10^{-25}
 - (E) 9.6×10^{-25}

- 16. Which of the following CANNOT affect the extent of reaction?
 - (A) changing the temperature
 - (B) adding a catalyst
 - (C) increasing the amounts of reactants
 - (D) removing some product
 - (E) changing the volume
- 17. In which of the following cases is the reaction expected to be exothermic?
 - (A) Increasing the pressure increases the amount of product formed.
 - (B) Increasing the amount of reactants increases the amount of product formed.
 - (C) Increasing the temperature increases the amount of product formed.
 - (D) Increasing the volume decreases the amount of product formed.
 - (E) Increasing the temperature decreases the amount of product formed.
- 18. A reaction has a very large equilibrium constant of 3.3 × 10¹³. Which statement is NOT true about this reaction?
 - (A) The reaction is very fast.
 - (B) The reaction is essentially complete.
 - (C) The reaction is spontaneous.
 - (D) The equilibrium constant will change if the temperature is changed.
 - (E) The products will react to yield very little reactant.

- 19. The K_{sp} of AgCl is 1.0×10^{-10} , and the K_{sp} of AgI is 8.3×10^{-17} . A solution is 0:100 M in I⁻ and Cl⁻. What is the molarity of iodide ions when AgCl just starts to precipitate?
 - (A) 1.0×10^{-5}
 - (B) 9.1×10^{-9}
 - (C) 8.3×10^{-7}
 - (D) 8.3×10^{-8}
 - (E) 1.2×10^4
- 20. One liter of solution contains 2.4×10^{-3} mol of sulfate ions. What is the molar solubility of BaSO₄ in this solution? ($K_{sp} = 1.1 \times 10^{-10}$ for BaSO₄.)
 - (A) 1.05×10^{-5}
 - (B) 1.1×10^{-9}
 - (C) 2.6×10^{-13}
 - (D) 2.2×10^7
 - (E) 4.6×10^{-8}
- 21. The equilibrium constant for the reaction

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

must be determined. If 1.00 g of HI is placed in a 2.00-L flask, which of the following is LEAST important in determining the equilibrium constant?

- (A) The temperature must remain constant at the desired value.
- (B) Several measurements must be made to assure that the reaction is at equilibrium.
- (C) Only one of the three concentrations needs to be accurately determined.
- (D) All three concentrations must be accurately measured.
- (E) The original mass and volume of the flask must be accurately measured.

22. In an experiment 0.0300 mol each of $SO_3(g)$, $SO_2(g)$, and $O_2(g)$ were placed in a 10.0-L flask at a certain temperature. When the reaction came to equilibrium, the concentration of $SO_2(g)$ in the flask was 3.50×10^{-5} M. What is K_c for the reaction

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

(A)
$$3.5 \times 10^{-5}$$

(B)
$$1.9 \times 10^7$$

(C)
$$5.2 \times 10^{-8}$$

(D)
$$1.2 \times 10^{-9}$$

(E)
$$8.2 \times 10^8$$

23. The weak acid H₂A ionizes in two steps with these equilibrium constants:

$$H_2A \iff H^+ + HA^- \qquad K_{a1} = 2.3 \times 10^{-4}$$

 $HA^2 \iff H^+ + A^{2-} \qquad K_{a2} = 4.5 \times 10^{-7}$

What is the equilibrium constant for the reaction:

$$H_2A \rightleftharpoons 2H^+ + A^{2-}$$

(A)
$$6.8 \times 10^{-11}$$

(B)
$$1.0 \times 10^{-10}$$

(C)
$$2.3045 \times 10^{-4}$$

(D) 2.0×10^{-3}

(E)
$$5.1 \times 10^2$$