16 • Acids, Bases and salts

16.6 - 16.7 Polyprotic Acids and Additional Practice Problems

Polyprotic Acid Practice Problem

1. The solubility in pure water at 25° and 0.1 atm pressure is 0.0037 M. The common practice is to assume that all of the dissolved CO_2 is in the form of carbonic acid, H_2CO_3 , which is produced by reaction between the CO_2 and H_2O .

 $K_{a1} = 4.3 \times 10^{-7}$ $K_{a2} = 5.6 \times 10^{-11}$

(a) What is the pH of a 0.0037 M solution of H_2CO_3

Initial		
Change		
Equilibrium		

(b) What is the concentration of the CO_3^{2-} ion?

Initial		
Change		
Equilibrium		

Polyprotic Acid Practice Problem #2

2. Calculate the pH and concentration of a 0.020 M solution of oxalic acid, $H_2C_2O_4.$

 $K_{a1} = 5.9 \times 10^{-2}$

 $K_{a2} = 6.4 \times 10^{-5}$

Initial		
Change		
Equilibrium		

(b) Calculate the concentration of the oxalate ion.

Initial		
Change		
Equilibrium		

Additional Practice Problems

- 1. A 0.020 M solution of niacin, $HO_2CC_5H_4N$, has a pH of 3.26.
 - (a) What percentage of this acid is ionized in this solution?

(b) What is the acid dissociation constant for niacin?