D) ceiling

Name:			9040 - 1 - rage 1
	Exploring the Coefficient of Friction		
1)		orizontal steel surface. If a 10newton force is required to keep the block moving B) 10. N	orce applied parallel to the surface is required to set g at constant velocity? C) greater than 10. N
2)	The diagram below shows a 5.0-the application of a horizontal fo		per second ² along a rough horizontal surface by
		$a = 6.0 \text{ m/s}^2$	
		F _f 5.0-kg BLOCK	== 50. N
		ROUGH SURFACE	
	What is the magnitude in newto	ns of the force of friction, F_f , acting on t	he block?
3)	-	ulled horizontally at constant velocity acock. [Show all work, including the equa	cross a sheet of ice. Calculate the magnitude of the tion and substitution with units.]
4)	Explain how to find the coefficient of kinetic friction between a wooden block of unknown mass and a tabletop in the laboratory. Include the following in your explanation: • Measurements required • Equipment needed • Procedure • Equation(s) needed to calculate the coefficient of friction		
5)		o move the crate across the floor at con-	l warehouse floor is 0.200. Calculate the magnitude stant speed. [Show all work, including the

A box is pushed toward the right across a classroom floor. The force of friction on the box is directed toward the

C) left

B) right

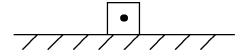
____ 6)

A) floor

___ 7) The table below lists the coefficients of kinetic friction for four materials sliding over steel.

Material	Coefficient of Kinetic Friction
aluminum	0.47
brass	0.44
copper	0.36
steel	0.57

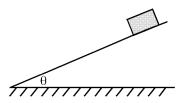
A 10.-kilogram block of each of these materials is pulled horizontally across a steel floor at constant velocity. Which block requires the *smallest* applied force to keep it moving at constant velocity?


A) steel

- B) aluminum
- C) copper

D) brass

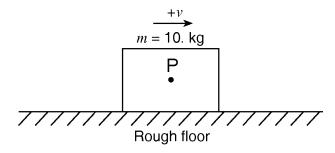
Questions 8 and 9 refer to the following:


A force of 10. newtons toward the right is exerted on a wooden crate initially moving to the right on a horizontal wooden floor. The crate weighs 25 newtons.

- ____ 8) (a) On the diagram provided, draw and label *all* vertical forces acting on the crate.
 - (b) On the same diagram, draw and label *all* horizontal forces acting on the crate.

- ____9) (a) Calculate the magnitude of the force of friction between the crate and the floor in the given diagram. [Show all work, including the equation and substitution with units.]
 - (b) What is the magnitude of the net force acting on the crate?
 - (c) Is the crate accelerating? [Explain your answer.]

__ 10) The diagram below shows a block sliding down a plane inclined at angle θ with the horizontal.



As angle θ is increased, the coefficient of kinetic friction between the bottom surface of the block and the surface of the incline will

A) remain the same

B) increase

- C) decrease
- ____11) A skier on waxed skis is pulled at constant speed across level snow by a horizontal force of 39 newtons. Calculate the normal force exerted on the skier. [Show all work, including the equation and substitution with units.]
- ___ 12) A 10.-kilogram box, sliding to the right across a rough horizontal floor, accelerates at -2.0 meters per second² due to the force of friction.

- (a) Calculate the magnitude of the net force acting on the box. [Show all work, including the equation and substitution with units.]
- (b) On the diagram shown, draw a vector representing the net force acting on the box. Begin the vector at point P and use a scale of 1.0 centimeter = 5.0 newtons.
- (c) Calculate the coefficient of kinetic friction between the box and the floor. [Show all work, including the equation and substitution with units.]

____ 13) A different force is applied to each of four 1-kilogram blocks to slide them across a uniform steel surface at constant speed as shown below. In which diagram is the coefficient of friction between the block and steel *smallest*?

