Name _____ Acids and Bases Pre-quiz

1. Designate the conjugate Brønsted-Lowry base for each of the following acids:

(i) H_2CO_3 (ii) HNO_3 (iii) $H^+(aq)$

Online Text $O HCO_3^-, NO_3^{2^-}, H_2O$ $O CO_3^{2^-}, NO_3^-, OH^ O HCO_3^-, NO_3^-, OH^ O HCO_3^-, NO_3^-, H_2O$ $O CO_3^{2^-}, NO_3^{2^-}, H_2O$

2. What is the conjugate base of OH?

Online Text ○ 0⁻ ○ 0²⁻ ○ 0₂ ○ H₃0⁺ ○ H₅0

3. What is the concentration of hydronium ions in a solution with a hydroxide-ion concentration of 2.31 x 10⁻⁴ Mat 25°C?

<u>Online Text</u>

2.31 x 10¹⁰ M
2.31 x 10⁻⁴ M
4.33 x 10⁻¹¹ M
2.31 x 10⁻¹⁸ M

4. At normal body temperature, 37°C, $K_w = 2.4 \times 10^{-14}$. Calculate [H⁺] if [OH⁻] = 1.3 x 10⁻⁹ *M* at this temperature

5. Calculate the pH of a solution if its $[OH^-] = 0.000700 M$ and indicate whether the solution is acidic, basic, or neutral.

6. If a solution has a pH = 9.50, what are the molar concentrations of $H^+(aq)$ and $OH^-(aq)$ in the solution?

7. Calculate the pH of the following strong acid solutions:

(i) 1.02 g of HNO_3 in 250. mL of solution

8. Calculate the pOH of the following solutions:

(i) 3.98 x 10⁻² *M* Mg(OH)₂

9. Phenol (C₆H₅OH) is a weak acid with one acidic hydrogen. The pH of a 0.00500 *M* solution of phenol is 6.09. Calculate K_a .

10. Barbital is a weak monoprotic acid with $K_a = 1.0 \times 10^{-8}$. What is the pH of a 1.5 x 10^{-4} *M* solution of barbital?

11. Ammonia, NH_3 , is a weak base. Write the K_b expression for ammonia

12. The pH of a 0.25 M solution of base, B, is 9.10. Calculate the K_b for base B